Convex KKM maps, monotone operators and Minty variational inequalities
نویسندگان
چکیده
منابع مشابه
Minty Variational Inequalities and Monotone Trajectories of Differential Inclusions
In [8] the notion of “projected differential equation” has been introduced and the stability of solutions has been studied by means of Stampacchia type variational inequalities. More recently, in [20], Minty variational inequalities have been involved in the study of properties of the trajectories of such a projected differential equation. We consider classical generalizations of both problems,...
متن کاملEnlargement of Monotone Operators with Applications to Variational Inequalities
Given a point-to-set operator T, we introduce the operator T " deened as T " (x) = fu : hu ? v; x ? yi 0 for all y 2 R n ; v 2 T(y)g. When T is maximal monotone T " inherits most properties of the "-subdiierential, e.g. it is bounded on bounded sets, T " (x) contains the image through T of a suuciently small ball around x, etc. We prove these and other relevant properties of T " , and apply it ...
متن کاملProximal Methods for Variational Inequalities with Set-Valued Monotone Operators
A general approach to analyse convergence and rate of convergence of the proximal-like methods for variational inequalities with set-valued maximal monotone operators is developed. It is oriented to methods coupling successive approximation of the variational inequality with the proximal point algorithm as well as to related methods using regularization on a subspace and weak regularization. Th...
متن کاملGeneralized Kkm Maps on Generalized Convex Spaces
In the present paper, we extend known KKM theorems and matching theorems for generalized KKM maps to G-convex spaces. From these results, we deduce generalized versions of main results of Kassay and Kolumbán [KK] and some others.
متن کاملGeneral KKM Theorem with Applications to Minimax and Variational Inequalities
In this paper, a general version of the KKM theorem is derived by using the concept of generalized KKM mappings introduced by Chang and Zhang. By employing our general KKM theorem, we obtain a general minimax inequality which contains several existing ones as special cases. As applications of our general minimax inequality, we derive an existence result for saddle-point problems under general s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fixed Point Theory and Applications
سال: 2015
ISSN: 1661-7738,1661-7746
DOI: 10.1007/s11784-015-0231-6